gem5 event-driven programming
在此简单介绍下 gem5 事件机制, gem5 事件机制的实现主要实现在 eventq.hh
event.cc
两个文件中,当然肯定还有相关的文件做配合,这部分等待后续的更新。当前主要解释 eventq.hh
event.cc
这两个文件中包含的 api 和相关的机制原理,这篇笔记主要先记录相关的 api 和常量的定义,后详细分析 eventq.hh
event.cc
中的源代码。
常量定义和 api 简记
EventBase
中的标记
EventBase
中的标记主要记录一个 event 的状态,这些标记具有不同的含义,会在不同的函数中被设置或者清除。
标记 | 含义 |
---|---|
Squashed | 忽略一次调度 |
Scheduled | 当前事件已经插入到事件队列 |
Managed | 是否对事件进行自动内存管理 |
AutoDelete | 这个标记同上,是否对事件进行自动内存管理 |
Initialized | 事件是否被初始化 |
EventBase
中的优先级
对优先级不做介绍,只要知道有这个概念就行了。
Event
中的各个成员
名称 | 类型 | 含义 |
---|---|---|
EventQueue | 友元类 | 使EventQueue能够访问Event的各种信息和状态 |
nextBin | 成员变量 | 指向一级队列中的下一级(不同时间优先级) |
nextInBin | 成员变量 | 指向二级队列中的下一个(同时间优先级) |
insertBefore(Event *event, Event *curr) | 静态方法 | 从队列中插入 |
removeItem(Event *event, Event *last) | 静态方法 | 从队列中移除 |
_when | 成员变量 | 当前事件的时间 |
_priority | 成员变量 | 当前事件的优先级 |
flags | 成员变量 | 当前事件的标记 |
instanceCounter | 静态变量 | 全局唯一的id生成变量,会自增 |
instance | 成员变量 | 当前事件的id |
queue | 成员变量 | 当前事件所处的队列 |
setWhen | 成员函数 | 设置事件触发事件 |
initialized | 成员函数 | 判断事件是不是已经初始化 |
acquire release acquireImpl releaseImpl | 成员函数 | 对事件的内存管理,只有在启用事件内存管理的时候才有用 |
dump | 成员函数 | 打印事件的状态信息 |
process | 纯虚函数 | 继承者实现,这个事件干什么 |
scheduled | 成员函数 | 测试schedule是否设置,即这个事件是不是在队列中了 |
squash | 成员函数 | 设置squash标记 |
squashed | 成员函数 | squash标记是否被设置了 |
EventQueue
中的各个成员
名称 | 类型 | 含义 |
---|---|---|
objName | 成员变量 | 队列名称 |
head | 成员变量 | 当前队列头 |
_curTick | 成员变量 | 当前队列的时间 |
async_queue_mutex | 成员变量 | 将队列分配到多线程时候的锁,在多个队列同时执行的时候可能会有用 |
async_queue | 成员变量 | 其他线程的队列向本队列插入事件的时候会先插入到这条队列,稍后这条队列中的事件会在安全的时候同步到当前队列 |
service_mutex | 成员变量 | 调度事件的时候需要用到的锁 |
insert | 成员函数 | 向队列中插入 |
remove | 成员函数 | 从队列中删除 |
asyncInsert | 成员函数 | 异步插入,多线程情况下使用 |
ScopedMigration | 内部类 | 切换当前调度队列的帮助类 |
ScopedRelease | 内部类 | 对队列上锁开锁的帮助类 |
schedule | 成员函数 | 将指定事件插入到队列中,并设置scheduled标记 |
deschedule | 成员函数 | 将指定事件从队列中移出,并消除Scheduled Squashed标记 |
reschedule | 成员函数 | 更改已经在队列中的指定事件的时间或者消除其Squashed标记,使当前队列的事件在service到的时候能够被执行 |
serviceOne | 成员函数 | 选取当前的队列头,如果没有Squashed标记,执行这个事件,如果有Squashed,忽略本次执行并且将这个标记清除 |
serviceEvents | 成员函数 | 传入一个时间,传入时间之前的事件都被执行 |
EventManager
中的各个成员
EventManager 只是包含了 EventQueue 中的各种 schedule 方法。
事件队列演示
源代码解读
eventq.hh
源代码
c++
/* @file
* EventQueue interfaces
*/
#ifndef __SIM_EVENTQ_HH__
#define __SIM_EVENTQ_HH__
#include <algorithm>
#include <cassert>
#include <climits>
#include <functional>
#include <iosfwd>
#include <list>
#include <memory>
#include <string>
#include "base/debug.hh"
#include "base/flags.hh"
#include "base/named.hh"
#include "base/trace.hh"
#include "base/type_traits.hh"
#include "base/types.hh"
#include "base/uncontended_mutex.hh"
#include "debug/Event.hh"
#include "sim/cur_tick.hh"
#include "sim/serialize.hh"
namespace gem5
{
class EventQueue; // forward declaration
class BaseGlobalEvent;
//! Simulation Quantum for multiple eventq simulation.
//! The quantum value is the period length after which the queues
//! synchronize themselves with each other. This means that any
//! event to scheduled on Queue A which is generated by an event on
//! Queue B should be at least simQuantum ticks away in future.
extern Tick simQuantum;
//! Current number of allocated main event queues.
// 当前分配的所有队列数量
extern uint32_t numMainEventQueues;
//! Array for main event queues.
// 所有队列的列表
extern std::vector<EventQueue *> mainEventQueue;
//! The current event queue for the running thread. Access to this queue
//! does not require any locking from the thread.
// 当前线程正在执行的事件队列
extern __thread EventQueue *_curEventQueue;
//! Current mode of execution: parallel / serial
extern bool inParallelMode;
//! Function for returning eventq queue for the provided
//! index. The function allocates a new queue in case one
//! does not exist for the index, provided that the index
//! is with in bounds.
EventQueue *getEventQueue(uint32_t index);
inline EventQueue *curEventQueue() { return _curEventQueue; }
inline void curEventQueue(EventQueue *q);
/**
* Common base class for Event and GlobalEvent, so they can share flag
* and priority definitions and accessor functions. This class should
* not be used directly.
*/
// 定义各种标记和优先级
class EventBase
{
protected:
typedef unsigned short FlagsType;
typedef ::gem5::Flags<FlagsType> Flags;
static const FlagsType PublicRead = 0x003f; // public readable flags
static const FlagsType PublicWrite = 0x001d; // public writable flags
static const FlagsType Squashed = 0x0001; // has been squashed
static const FlagsType Scheduled = 0x0002; // has been scheduled
static const FlagsType Managed = 0x0004; // Use life cycle manager
static const FlagsType AutoDelete = Managed; // delete after dispatch
/**
* This used to be AutoSerialize. This value can't be reused
* without changing the checkpoint version since the flag field
* gets serialized.
*/
static const FlagsType Reserved0 = 0x0008;
static const FlagsType IsExitEvent = 0x0010; // special exit event
static const FlagsType IsMainQueue = 0x0020; // on main event queue
static const FlagsType Initialized = 0x7a40; // somewhat random bits
static const FlagsType InitMask = 0xffc0; // mask for init bits
public:
/**
* @ingroup api_eventq
*/
typedef int8_t Priority;
/// Event priorities, to provide tie-breakers for events scheduled
/// at the same cycle. Most events are scheduled at the default
/// priority; these values are used to control events that need to
/// be ordered within a cycle.
/**
* Minimum priority
*
* @ingroup api_eventq
*/
static const Priority Minimum_Pri = SCHAR_MIN;
/**
* If we enable tracing on a particular cycle, do that as the
* very first thing so we don't miss any of the events on
* that cycle (even if we enter the debugger).
*
* @ingroup api_eventq
*/
static const Priority Debug_Enable_Pri = -101;
/**
* Breakpoints should happen before anything else (except
* enabling trace output), so we don't miss any action when
* debugging.
*
* @ingroup api_eventq
*/
static const Priority Debug_Break_Pri = -100;
/**
* CPU switches schedule the new CPU's tick event for the
* same cycle (after unscheduling the old CPU's tick event).
* The switch needs to come before any tick events to make
* sure we don't tick both CPUs in the same cycle.
*
* @ingroup api_eventq
*/
static const Priority CPU_Switch_Pri = -31;
/**
* For some reason "delayed" inter-cluster writebacks are
* scheduled before regular writebacks (which have default
* priority). Steve?
*
* @ingroup api_eventq
*/
static const Priority Delayed_Writeback_Pri = -1;
/**
* Default is zero for historical reasons.
*
* @ingroup api_eventq
*/
static const Priority Default_Pri = 0;
/**
* DVFS update event leads to stats dump therefore given a lower priority
* to ensure all relevant states have been updated
*
* @ingroup api_eventq
*/
static const Priority DVFS_Update_Pri = 31;
/**
* Serailization needs to occur before tick events also, so
* that a serialize/unserialize is identical to an on-line
* CPU switch.
*
* @ingroup api_eventq
*/
static const Priority Serialize_Pri = 32;
/**
* CPU ticks must come after other associated CPU events
* (such as writebacks).
*
* @ingroup api_eventq
*/
static const Priority CPU_Tick_Pri = 50;
/**
* If we want to exit a thread in a CPU, it comes after CPU_Tick_Pri
*
* @ingroup api_eventq
*/
static const Priority CPU_Exit_Pri = 64;
/**
* Statistics events (dump, reset, etc.) come after
* everything else, but before exit.
*
* @ingroup api_eventq
*/
static const Priority Stat_Event_Pri = 90;
/**
* Progress events come at the end.
*
* @ingroup api_eventq
*/
static const Priority Progress_Event_Pri = 95;
/**
* If we want to exit on this cycle, it's the very last thing
* we do.
*
* @ingroup api_eventq
*/
static const Priority Sim_Exit_Pri = 100;
/**
* Maximum priority
*
* @ingroup api_eventq
*/
static const Priority Maximum_Pri = SCHAR_MAX;
};
/*
* An item on an event queue. The action caused by a given
* event is specified by deriving a subclass and overriding the
* process() member function.
*
* Caution, the order of members is chosen to maximize data packing.
*/
class Event : public EventBase, public Serializable
{
friend class EventQueue;
private:
// The event queue is now a linked list of linked lists. The
// 'nextBin' pointer is to find the bin, where a bin is defined as
// when+priority. All events in the same bin will be stored in a
// second linked list (a stack) maintained by the 'nextInBin'
// pointer. The list will be accessed in LIFO order. The end
// result is that the insert/removal in 'nextBin' is
// linear/constant, and the lookup/removal in 'nextInBin' is
// constant/constant. Hopefully this is a significant improvement
// over the current fully linear insertion.
Event *nextBin;
Event *nextInBin;
// 这两个函数不过多解释含义,需要的时候画图理解
// 总之全局的事件队列维护的是一个二级的队列就对了
static Event *insertBefore(Event *event, Event *curr);
static Event *removeItem(Event *event, Event *last);
Tick _when; //!< timestamp when event should be processed
Priority _priority; //!< event priority
Flags flags;
#ifndef NDEBUG
/// Global counter to generate unique IDs for Event instances
static Counter instanceCounter;
/// This event's unique ID. We can also use pointer values for
/// this but they're not consistent across runs making debugging
/// more difficult. Thus we use a global counter value when
/// debugging.
Counter instance;
/// queue to which this event belongs (though it may or may not be
/// scheduled on this queue yet)
EventQueue *queue;
#endif
#ifdef EVENTQ_DEBUG
Tick whenCreated; //!< time created
Tick whenScheduled; //!< time scheduled
#endif
void
setWhen(Tick when, EventQueue *q)
{
_when = when;
#ifndef NDEBUG
queue = q;
#endif
#ifdef EVENTQ_DEBUG
whenScheduled = curTick();
#endif
}
bool
initialized() const
{
return (flags & InitMask) == Initialized;
}
protected:
Flags
getFlags() const
{
return flags & PublicRead;
}
bool
isFlagSet(Flags _flags) const
{
assert(_flags.noneSet(~PublicRead));
return flags.isSet(_flags);
}
void
setFlags(Flags _flags)
{
assert(_flags.noneSet(~PublicWrite));
flags.set(_flags);
}
void
clearFlags(Flags _flags)
{
assert(_flags.noneSet(~PublicWrite));
flags.clear(_flags);
}
void
clearFlags()
{
flags.clear(PublicWrite);
}
/**
* This function isn't really useful if TRACING_ON is not defined
*
* @ingroup api_eventq
*/
virtual void trace(const char *action); //!< trace event activity
/// Return the instance number as a string.
const std::string instanceString() const;
protected: /* Memory management */
/**
* @{
* Memory management hooks for events that have the Managed flag set
*
* Events can use automatic memory management by setting the
* Managed flag. The default implementation automatically deletes
* events once they have been removed from the event queue. This
* typically happens when events are descheduled or have been
* triggered and not rescheduled.
*
* The methods below may be overridden by events that need custom
* memory management. For example, events exported to Python need
* to impement reference counting to ensure that the Python
* implementation of the event is kept alive while it lives in the
* event queue.
*
* @note Memory managers are responsible for implementing
* reference counting (by overriding both acquireImpl() and
* releaseImpl()) or checking if an event is no longer scheduled
* in releaseImpl() before deallocating it.
*/
// 以下这四个函数主要是内存管理相关的
// 主要管理事件对象什么时候在内存中分配和释放
/**
* Managed event scheduled and being held in the event queue.
*/
void acquire();
/**
* Managed event removed from the event queue.
*/
void release();
virtual void acquireImpl();
virtual void releaseImpl();
/** @} */
public:
/*
* Event constructor
* @param queue that the event gets scheduled on
*
* @ingroup api_eventq
*/
Event(Priority p = Default_Pri, Flags f = 0)
: nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
flags(Initialized | f)
{
assert(f.noneSet(~PublicWrite));
#ifndef NDEBUG
instance = ++instanceCounter;
queue = NULL;
#endif
#ifdef EVENTQ_DEBUG
whenCreated = curTick();
whenScheduled = 0;
#endif
}
/**
* @ingroup api_eventq
* @{
*/
virtual ~Event();
virtual const std::string name() const;
/// Return a C string describing the event. This string should
/// *not* be dynamically allocated; just a const char array
/// describing the event class.
virtual const char *description() const;
/// Dump the current event data
void dump() const;
/** @}*/ //end of api group
public:
/*
* This member function is invoked when the event is processed
* (occurs). There is no default implementation; each subclass
* must provide its own implementation. The event is not
* automatically deleted after it is processed (to allow for
* statically allocated event objects).
*
* If the AutoDestroy flag is set, the object is deleted once it
* is processed.
*
* @ingroup api_eventq
*/
virtual void process() = 0;
/**
* Determine if the current event is scheduled
*
* @ingroup api_eventq
*/
bool scheduled() const { return flags.isSet(Scheduled); }
/**
* Squash the current event
*
* @ingroup api_eventq
*/
void squash() { flags.set(Squashed); }
/**
* Check whether the event is squashed
*
* @ingroup api_eventq
*/
bool squashed() const { return flags.isSet(Squashed); }
/**
* See if this is a SimExitEvent (without resorting to RTTI)
*
* @ingroup api_eventq
*/
bool isExitEvent() const { return flags.isSet(IsExitEvent); }
/**
* Check whether this event will auto-delete
*
* @ingroup api_eventq
*/
bool isManaged() const { return flags.isSet(Managed); }
/**
* The function returns true if the object is automatically
* deleted after the event is processed.
*
* @ingroup api_eventq
*/
bool isAutoDelete() const { return isManaged(); }
/**
* Get the time that the event is scheduled
*
* @ingroup api_eventq
*/
Tick when() const { return _when; }
/**
* Get the event priority
*
* @ingroup api_eventq
*/
Priority priority() const { return _priority; }
//! If this is part of a GlobalEvent, return the pointer to the
//! Global Event. By default, there is no GlobalEvent, so return
//! NULL. (Overridden in GlobalEvent::BarrierEvent.)
virtual BaseGlobalEvent *globalEvent() { return NULL; }
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
};
// 重载运算符用于比较
/**
* @ingroup api_eventq
*/
inline bool
operator<(const Event &l, const Event &r)
{
return l.when() < r.when() ||
(l.when() == r.when() && l.priority() < r.priority());
}
/**
* @ingroup api_eventq
*/
inline bool
operator>(const Event &l, const Event &r)
{
return l.when() > r.when() ||
(l.when() == r.when() && l.priority() > r.priority());
}
/**
* @ingroup api_eventq
*/
inline bool
operator<=(const Event &l, const Event &r)
{
return l.when() < r.when() ||
(l.when() == r.when() && l.priority() <= r.priority());
}
/**
* @ingroup api_eventq
*/
inline bool
operator>=(const Event &l, const Event &r)
{
return l.when() > r.when() ||
(l.when() == r.when() && l.priority() >= r.priority());
}
/**
* @ingroup api_eventq
*/
inline bool
operator==(const Event &l, const Event &r)
{
return l.when() == r.when() && l.priority() == r.priority();
}
/**
* @ingroup api_eventq
*/
inline bool
operator!=(const Event &l, const Event &r)
{
return l.when() != r.when() || l.priority() != r.priority();
}
/**
* Queue of events sorted in time order
*
* Events are scheduled (inserted into the event queue) using the
* schedule() method. This method either inserts a <i>synchronous</i>
* or <i>asynchronous</i> event.
*
* Synchronous events are scheduled using schedule() method with the
* argument 'global' set to false (default). This should only be done
* from a thread holding the event queue lock
* (EventQueue::service_mutex). The lock is always held when an event
* handler is called, it can therefore always insert events into its
* own event queue unless it voluntarily releases the lock.
*
* Events can be scheduled across thread (and event queue borders) by
* either scheduling asynchronous events or taking the target event
* queue's lock. However, the lock should <i>never</i> be taken
* directly since this is likely to cause deadlocks. Instead, code
* that needs to schedule events in other event queues should
* temporarily release its own queue and lock the new queue. This
* prevents deadlocks since a single thread never owns more than one
* event queue lock. This functionality is provided by the
* ScopedMigration helper class. Note that temporarily migrating
* between event queues can make the simulation non-deterministic, it
* should therefore be limited to cases where that can be tolerated
* (e.g., handling asynchronous IO or fast-forwarding in KVM).
*
* Asynchronous events can also be scheduled using the normal
* schedule() method with the 'global' parameter set to true. Unlike
* the previous queue migration strategy, this strategy is fully
* deterministic. This causes the event to be inserted in a separate
* queue of asynchronous events (async_queue), which is merged main
* event queue at the end of each simulation quantum (by calling the
* handleAsyncInsertions() method). Note that this implies that such
* events must happen at least one simulation quantum into the future,
* otherwise they risk being scheduled in the past by
* handleAsyncInsertions().
*/
class EventQueue
{
private:
friend void curEventQueue(EventQueue *);
std::string objName;
Event *head;
Tick _curTick;
//! Mutex to protect async queue.
UncontendedMutex async_queue_mutex;
//! List of events added by other threads to this event queue.
std::list<Event*> async_queue;
/**
* Lock protecting event handling.
*
* This lock is always taken when servicing events. It is assumed
* that the thread scheduling new events (not asynchronous events
* though) have taken this lock. This is normally done by
* serviceOne() since new events are typically scheduled as a
* response to an earlier event.
*
* This lock is intended to be used to temporarily steal an event
* queue to support inter-thread communication when some
* deterministic timing can be sacrificed for speed. For example,
* the KVM CPU can use this support to access devices running in a
* different thread.
*
* @see EventQueue::ScopedMigration.
* @see EventQueue::ScopedRelease
* @see EventQueue::lock()
* @see EventQueue::unlock()
*/
UncontendedMutex service_mutex;
//! Insert / remove event from the queue. Should only be called
//! by thread operating this queue.
void insert(Event *event);
void remove(Event *event);
//! Function for adding events to the async queue. The added events
//! are added to main event queue later. Threads, other than the
//! owning thread, should call this function instead of insert().
void asyncInsert(Event *event);
EventQueue(const EventQueue &);
public:
class ScopedMigration
{
public:
/**
* Temporarily migrate execution to a different event queue.
*
* An instance of this class temporarily migrates execution to
* different event queue by releasing the current queue, locking
* the new queue, and updating curEventQueue(). This can, for
* example, be useful when performing IO across thread event
* queues when timing is not crucial (e.g., during fast
* forwarding).
*
* ScopedMigration does nothing if both eqs are the same
*
* @ingroup api_eventq
*/
ScopedMigration(EventQueue *_new_eq, bool _doMigrate = true)
:new_eq(*_new_eq), old_eq(*curEventQueue()),
doMigrate((&new_eq != &old_eq)&&_doMigrate)
{
if (doMigrate){
old_eq.unlock();
new_eq.lock();
curEventQueue(&new_eq);
}
}
~ScopedMigration()
{
if (doMigrate){
new_eq.unlock();
old_eq.lock();
curEventQueue(&old_eq);
}
}
private:
EventQueue &new_eq;
EventQueue &old_eq;
bool doMigrate;
};
class ScopedRelease
{
public:
/**
* Temporarily release the event queue service lock.
*
* There are cases where it is desirable to temporarily release
* the event queue lock to prevent deadlocks. For example, when
* waiting on the global barrier, we need to release the lock to
* prevent deadlocks from happening when another thread tries to
* temporarily take over the event queue waiting on the barrier.
*
* @group api_eventq
*/
ScopedRelease(EventQueue *_eq)
: eq(*_eq)
{
eq.unlock();
}
~ScopedRelease()
{
eq.lock();
}
private:
EventQueue &eq;
};
/**
* @ingroup api_eventq
*/
EventQueue(const std::string &n);
/**
* @ingroup api_eventq
* @{
*/
virtual const std::string name() const { return objName; }
void name(const std::string &st) { objName = st; }
/** @}*/ //end of api_eventq group
/**
* Schedule the given event on this queue. Safe to call from any thread.
*
* @ingroup api_eventq
*/
void
schedule(Event *event, Tick when, bool global=false)
{
assert(when >= getCurTick());
assert(!event->scheduled());
assert(event->initialized());
event->setWhen(when, this);
// The check below is to make sure of two things
// a. A thread schedules local events on other queues through the
// asyncq.
// b. A thread schedules global events on the asyncq, whether or not
// this event belongs to this eventq. This is required to maintain
// a total order amongst the global events. See global_event.{cc,hh}
// for more explanation.
if (inParallelMode && (this != curEventQueue() || global)) {
asyncInsert(event);
} else {
insert(event);
}
event->flags.set(Event::Scheduled);
event->acquire();
if (debug::Event)
event->trace("scheduled");
}
/**
* Deschedule the specified event. Should be called only from the owning
* thread.
* @ingroup api_eventq
*/
void
deschedule(Event *event)
{
assert(event->scheduled());
assert(event->initialized());
assert(!inParallelMode || this == curEventQueue());
remove(event);
event->flags.clear(Event::Squashed);
event->flags.clear(Event::Scheduled);
if (debug::Event)
event->trace("descheduled");
event->release();
}
/**
* Reschedule the specified event. Should be called only from the owning
* thread.
*
* @ingroup api_eventq
*/
void
reschedule(Event *event, Tick when, bool always=false)
{
assert(when >= getCurTick());
assert(always || event->scheduled());
assert(event->initialized());
assert(!inParallelMode || this == curEventQueue());
if (event->scheduled()) {
remove(event);
} else {
event->acquire();
}
event->setWhen(when, this);
insert(event);
event->flags.clear(Event::Squashed);
event->flags.set(Event::Scheduled);
if (debug::Event)
event->trace("rescheduled");
}
Tick nextTick() const { return head->when(); }
void setCurTick(Tick newVal) { _curTick = newVal; }
/**
* While curTick() is useful for any object assigned to this event queue,
* if an object that is assigned to another event queue (or a non-event
* object) need to access the current tick of this event queue, this
* function is used.
*
* Tick is the unit of time used in gem5.
*
* @return Tick The current tick of this event queue.
* @ingroup api_eventq
*/
Tick getCurTick() const { return _curTick; }
Event *getHead() const { return head; }
Event *serviceOne();
/**
* process all events up to the given timestamp. we inline a quick test
* to see if there are any events to process; if so, call the internal
* out-of-line version to process them all.
*
* Notes:
* - This is only used for "instruction" event queues. Instead of counting
* ticks, this is actually counting instructions.
* - This updates the current tick value to the value of the entry at the
* head of the queue.
*
* @ingroup api_eventq
*/
void
serviceEvents(Tick when)
{
while (!empty()) {
if (nextTick() > when)
break;
/**
* @todo this assert is a good bug catcher. I need to
* make it true again.
*/
//assert(head->when() >= when && "event scheduled in the past");
serviceOne();
}
setCurTick(when);
}
/**
* Returns true if no events are queued
*
* @ingroup api_eventq
*/
bool empty() const { return head == NULL; }
/**
* This is a debugging function which will print everything on the event
* queue.
*
* @ingroup api_eventq
*/
void dump() const;
bool debugVerify() const;
/**
* Function for moving events from the async_queue to the main queue.
*/
void handleAsyncInsertions();
/**
* Function to signal that the event loop should be woken up because
* an event has been scheduled by an agent outside the gem5 event
* loop(s) whose event insertion may not have been noticed by gem5.
* This function isn't needed by the usual gem5 event loop but may
* be necessary in derived EventQueues which host gem5 onto other
* schedulers.
*
* @param when Time of a delayed wakeup (if known). This parameter
* can be used by an implementation to schedule a wakeup in the
* future if it is sure it will remain active until then.
* Or it can be ignored and the event queue can be woken up now.
*
* @ingroup api_eventq
*/
virtual void wakeup(Tick when = (Tick)-1) { }
/**
* function for replacing the head of the event queue, so that a
* different set of events can run without disturbing events that have
* already been scheduled. Already scheduled events can be processed
* by replacing the original head back.
* USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
* NOT RECOMMENDED FOR USE.
*/
Event* replaceHead(Event* s);
/**@{*/
/**
* Provide an interface for locking/unlocking the event queue.
*
* @warn Do NOT use these methods directly unless you really know
* what you are doing. Incorrect use can easily lead to simulator
* deadlocks.
*
* @see EventQueue::ScopedMigration.
* @see EventQueue::ScopedRelease
* @see EventQueue
*/
void lock() { service_mutex.lock(); }
void unlock() { service_mutex.unlock(); }
/**@}*/
/**
* Reschedule an event after a checkpoint.
*
* Since events don't know which event queue they belong to,
* parent objects need to reschedule events themselves. This
* method conditionally schedules an event that has the Scheduled
* flag set. It should be called by parent objects after
* unserializing an object.
*
* @warn Only use this method after unserializing an Event.
*/
void checkpointReschedule(Event *event);
virtual ~EventQueue()
{
while (!empty())
deschedule(getHead());
}
};
inline void
curEventQueue(EventQueue *q)
{
_curEventQueue = q;
Gem5Internal::_curTickPtr = (q == nullptr) ? nullptr : &q->_curTick;
}
void dumpMainQueue();
class EventManager
{
protected:
/** A pointer to this object's event queue */
EventQueue *eventq;
public:
/**
* Event manger manages events in the event queue. Where
* you can schedule and deschedule different events.
*
* @ingroup api_eventq
* @{
*/
EventManager(EventManager &em) : eventq(em.eventq) {}
EventManager(EventManager *em) : eventq(em->eventq) {}
EventManager(EventQueue *eq) : eventq(eq) {}
/** @}*/ //end of api_eventq group
/**
* @ingroup api_eventq
*/
EventQueue *
eventQueue() const
{
return eventq;
}
/**
* @ingroup api_eventq
*/
void
schedule(Event &event, Tick when)
{
eventq->schedule(&event, when);
}
/**
* @ingroup api_eventq
*/
void
deschedule(Event &event)
{
eventq->deschedule(&event);
}
/**
* @ingroup api_eventq
*/
void
reschedule(Event &event, Tick when, bool always = false)
{
eventq->reschedule(&event, when, always);
}
/**
* @ingroup api_eventq
*/
void
schedule(Event *event, Tick when)
{
eventq->schedule(event, when);
}
/**
* @ingroup api_eventq
*/
void
deschedule(Event *event)
{
eventq->deschedule(event);
}
/**
* @ingroup api_eventq
*/
void
reschedule(Event *event, Tick when, bool always = false)
{
eventq->reschedule(event, when, always);
}
/**
* This function is not needed by the usual gem5 event loop
* but may be necessary in derived EventQueues which host gem5
* on other schedulers.
* @ingroup api_eventq
*/
void wakeupEventQueue(Tick when = (Tick)-1)
{
eventq->wakeup(when);
}
void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
};
/**
* @brief Wrap a member function inside MemberEventWrapper to use it as an
* event callback. This wrapper should be prefered over EventFunctionWrapper
* for better performance and type safety.
*
* Wrapping a function *process* member of a class *klass* can be done by
* adding a member variable of the following type:
* MemberEventWrapper<&klass::process>.
*
* It is required that klass::process takes no explicit argument and returns no
* value as these could not be handled by the event scheduler.
*
* @tparam F Pointer to the member function wrapped in this event.
*/
template <auto F>
class MemberEventWrapper final: public Event, public Named
{
using CLASS = MemberFunctionClass_t<F>;
static_assert(std::is_same_v<void, MemberFunctionReturn_t<F>>);
static_assert(std::is_same_v<MemberFunctionArgsTuple_t<F>, std::tuple<>>);
public:
[[deprecated("Use reference version of this constructor instead")]]
MemberEventWrapper(CLASS *object,
bool del = false,
Priority p = Default_Pri):
MemberEventWrapper{*object, del, p}
{}
/**
* @brief Construct a new MemberEventWrapper object
*
* @param object instance of the object to call the wrapped member func on
* @param del if true, flag this event as AutoDelete
* @param p priority of this event
*/
MemberEventWrapper(CLASS &object,
bool del = false,
Priority p = Default_Pri):
Event(p),
Named(object.name() + ".wrapped_event"),
mObject(&object)
{
if (del) setFlags(AutoDelete);
gem5_assert(mObject);
}
void process() override {
(mObject->*F)();
}
const char *description() const override { return "EventWrapped"; }
private:
CLASS *mObject;
};
template <class T, void (T::* F)()>
using EventWrapper [[deprecated("Use MemberEventWrapper instead")]]
= MemberEventWrapper<F>;
class EventFunctionWrapper : public Event
{
private:
std::function<void(void)> callback;
std::string _name;
public:
/**
* This function wraps a function into an event, to be
* executed later.
*
* @ingroup api_eventq
*/
EventFunctionWrapper(const std::function<void(void)> &callback,
const std::string &name,
bool del = false,
Priority p = Default_Pri)
: Event(p), callback(callback), _name(name)
{
if (del)
setFlags(AutoDelete);
}
/**
* @ingroup api_eventq
*/
void process() { callback(); }
/**
* @ingroup api_eventq
*/
const std::string
name() const
{
return _name + ".wrapped_function_event";
}
/**
* @ingroup api_eventq
*/
const char *description() const { return "EventFunctionWrapped"; }
};
/**
* \def SERIALIZE_EVENT(event)
*
* @ingroup api_serialize
*/
#define SERIALIZE_EVENT(event) event.serializeSection(cp, #event);
/**
* \def UNSERIALIZE_EVENT(event)
*
* @ingroup api_serialize
*/
#define UNSERIALIZE_EVENT(event) \
do { \
event.unserializeSection(cp, #event); \
eventQueue()->checkpointReschedule(&event); \
} while (0)
} // namespace gem5
#endif // __SIM_EVENTQ_HH__